LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034 **B.Sc.** DEGREE EXAMINATION – **MATHEMATICS** SIXTH SEMESTER - APRIL 2015 **MT 6608 - DISCRETE MATHEMATICS** Date: 20/04/2015 Dept. No. Max.: 100 Marks Time: 09:00-12:00 **SECTION - A ANSWER ALL QUESTIONS:** $(10 \times 2 = 20)$ 1) Construct the truth table for $P \lor Q$. 2) Write the duals of (i) $(P \lor Q) \land R$ (ii) $(P \land Q) \lor T$. 3) Write down the min terms of *P* and *Q*. 4) Show that the equivalence $P \lor (P \land Q) \Leftrightarrow P$. 5) Define monoid and give an example. 6) Give an example of (i) finite cyclic monoid and (ii) infinite cyclic monoid. 7) Define Lattice. 8) Let $S = \{a, b, c\}$. Draw the diagram of $\langle \rho(S), \subseteq \rangle$. 9) Define Boolean Algebra. 10) Define Boolean homomorphism.

SECTION - B

 $(5 \times 8 = 40)$

ANSWER ANY FIVE QUESTIONS:

11) Construct the truth table for $(P \rightarrow Q) \land (Q \rightarrow P)$.

- 12) Show that $((P \lor Q) \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \lor \neg Q) \lor (\neg P \land \neg R)$ is a tautology.
- 13) Obtain the principle disjunctive normal forms of (i) $\neg P \lor Q$ (ii) $(P \land Q) \lor (\neg P \land R) \lor (Q \land R)$.
- 14) Write the following sentences in the symbolic form:
 - (i) Jack and Jill went up hill.
 - (ii) If there is a flood then the crop will be destroyed.
 - (iii) If either Jerry takes Calculus or Ken takes Sociology, then Lorry will take English.
- 15) Prove that the composition of semigroup homomorphisms is also a semigroup homomorphism.
- 16) Let $\langle L, \leq \rangle$ be a Lattice. Then prove that for any $a, b, c \in L$, the inequality $a \oplus (b * c) \leq (a \oplus b) * c$ holds.
- 17) Define (i) Lattice homomorphism and give an example:
 - (ii) Lattice endomorphism
 - (iii) Lattice automorphism

18) Let B be a Boolean algebra. Then prove that (i) $(a \oplus b)' = a' * b'$ (ii) $(a * b)' = a' \oplus b'$.

SECTION - C

ANSWER ANY TWO QUESTIONS:	$(2 \times 20 = 40)$
19) (a) Construct the truth table for the following statements (i) $\neg (P \lor Q) \Leftrightarrow (\neg P \lor \neg Q)$	2).
(ii) $P \wedge \neg P$.	
(b) Obtain the p.d.n.f. of $(\neg P \rightarrow R) \land (Q \Leftrightarrow P)$.	(10+10)
20) (a) Prove that for any commutative monoid $(M,*)$, the set of all idempotent elements of M forms a submonoid.	
(b) Define sub semigroup and sub monoid and also give an example to each.	(12+8)
21) (a) State and prove the four properties of Lattices.	
(b) Define sub Boolean algebra.	(16+4)
22) (a) Prove the following Boolean identities:	
(i) $a \oplus (a' * b) = a \oplus b$	
(ii) $a * (a' \oplus b) = a * b$	
(iii) $(a*b) \oplus (a*b') = a.$	
(b) Define the following: (i) semigroup (ii) semigroup isomorphism (iii) sub lattic	ce
(iv) direct product of two Boolean algebras.	(10+10)

\$\$\$\$\$\$